Abstract
We consider a general minimal time problem with a convex constant dynamics and a lower semicontinuous extended real-valued target function defined on a Banach space. If the target function is the indicator function of a closed set, this problem is a minimal time problem for a target set, studied previously in particular by Colombo, Goncharov and Mordukhovich. We investigate several properties of the Frechet and proximal subdifferentials for the infimum time function. Also explicit expressions of the above mentioned subdifferentials as well as various directional derivatives are obtained. We provide some examples to show the essentiality of assumptions of our theorems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.