Abstract

The equations driving the flow of an incompressible fluid through a porous deformable medium are derived in the framework of the mixture theory. This mechanical system is described as a binary saturated mixture of incompressible components. The mathematical problem is characterized by the presence of two moving boundaries, the material boundaries of the solid and the fluid, respectively. The boundary and interface conditions to be supplied to ensure the well-posedness of the initial boundary value problem are inspired by typical processes in the manufacturing of composite materials. They are discussed in their connections with the nature of the partial stress tensors. Then the equations are conveniently recast in a material frame of reference fixed on the solid skeleton. By a proper choice of the characteristic magnitudes of the problem at hand, the equations are rewritten in non-dimensional form and the conditions which enable neglecting the inertial terms are discussed. The second part of the paper is devoted to the study of one-dimensional infiltration by the inertia-neglected model. It is shown that when the flow is driven through an elastic matrix by a constant rate liquid inflow at the border some exact results can be obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.