Abstract

A two-dimensional infiltration experiment was conducted to investigate and quantify the effect of spatial wettability variations on DNAPL migration and entrapment in saturated sands. Experimental observations of tetrachloroethylene (PCE) infiltration showed that organic-wet sand lenses acted as very effective capillary barriers, retaining PCE and inhibiting its downward migration. A multiphase numerical simulator was used to model this sand box experiment. The simulator incorporates wettability-modified van Genuchten and Brooks-Corey capillary pressure/saturation relationships as well as Burdine and Mualem relative permeability relationships. PCE mass distributions, estimated by image analysis of digital photographs taken during the infiltration event, were compared to simulation results. Although both relative permeability models were qualitatively able to predict the PCE retention in the organic-wet layers, simulations with the Mualem model failed to capture the observed rate of PCE migration. A traditional multiphase simulator, incorporating water-wet capillary retention relations, failed to predict both PCE pathways and retention behavior. This study illustrates the potential influence of subsurface wettability variations on DNAPL migration and entrapment and supports the use of modified capillary relations in conjunction with the Burdine model in multiphase flow simulators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call