Abstract

Infiltration of hematogenous lineage cells into the central nervous system (CNS) was investigated in the twitcher mouse, a murine model of globoid cell leukodystrophy in human. The hematogenous cells were selectively labeled following intraperitoneal injection of rhodamine isothiocyanate (RhIc). The frequency of detecting Rhlc-labeled cells (Rhlc+ cells) in the twitcher CNS varied with age. RhIc+ cells were hardly detected when injection was made prior to the postnatal day (PND) 30. The number of Rhlc' cells increased thereafter peaked at PND 35-38 and declined drastically at PND 40-45. The majority of RhIc+ cells were distributed in white matter of the CNS that correlated well with the areas of demyelination and of increased microglia/macrophage population described in our earlier studies. Almost all Rhlc+ cells were double-labeled with antibody for Mac-1 and also with MHC class II. Some small cells double-labeled with RhIc and antibodies for CD4, CD8, or IL-2R were also identified. By RT-PCR, the expression of monocyte chemoattractant protein- (MCP-1) mRNA increased drastically at PND 30, peaked at PND 35, and decreased gradually after PND 40. This pattern of mRNA changes correlated well with the dynamic pattern of the infiltration of hematogenous cells into the CNS, suggesting a role of chemokine(s) in the cellular infiltration in the twitcher brain. The expression of IL-10 mRNA also increased gradually. IL-10 is a cytokine inhibitory factor and a major regulator in suppressing the inflammatory response. Thus, our results indicated that hematogenous lineage cells infiltrated in the CNS of twitcher mice, and that MCP-1 and IL-10 may play an important role in regulating the cellular recruitment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.