Abstract

AbstractExperiments were undertaken to study the nature of granular interaction in running water by examining the influence of fine grain inputs to a coarser sediment bed with a mobile surface. Video recordings of grain sorting by both kinetic sieving and spontaneous percolation are used to diagnose the critical processes controlling the overall bed response. Kinetic sieving takes place in the mobile bed surface, with the finer sediment moving to the bottom of the bedload transport layer at the interface with the underlying quasi‐static coarse bed. We show that the behavior at this interface dictates how a channel responds to a fine sediment input. If, by spontaneous percolation, the fine sediment is able to infiltrate into the underlying quasi‐static bed, the total transport increases and the channel degrades. However, if the fine sediment input rate exceeds the transport capacity or is geometrically unable to infiltrate into the underlying bed, it forms a quasi‐static layer underneath the transport layer that inhibits entrainment from the underlying bed, resulting in aggradation and an increase in bed slope. Copyright © 2016 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.