Abstract

The thermochemical interaction between a Gd2Zr2O7 thermal barrier coating synthesized by electron‐beam physical vapor deposition and a model 33CaO–9MgO–13AlO3/2–45SiO2 (CMAS) melt with a melting point of ∼1240°C was investigated. A dense, fine‐grained, ∼6‐μm thick reaction layer formed after 4 h of isothermal exposure to 1300°C. It consisted primarily of an apatite phase based on Gd8Ca2(SiO4)6O2 and fluorite ZrO2 with Gd and Ca in a solid solution. Remarkably, melt infiltration into the intercolumnar gaps was largely suppressed, with penetration rarely exceeding ∼30 μm below the original surface. The microstructural evidence suggests a mechanism in which CMAS infiltration is arrested by rapid filling of the gaps with crystalline reaction products, followed by slow attack of the column tips.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.