Abstract

ABSTRACTSoil frost formation, snow distribution, and winter/spring/summer terminal infiltration rates (TIRs) were quantified in Icelandic Andisols with contrasting vegetation cover types (grassland, spruce and birch woodland, lupine, and sparsely vegetated lava site). TIRs (mm h−1; determined with double-ring infiltrometers) were generally higher in unfrozen than in frozen soils (102–369 vs. 9–306, respectively in sandy soils; 28–94 vs. 3–72 in finer-textured soils) and differed between land cover types, being consistently highest in birch woodlands. TIR was an inverse function of soil frost depth. Lowest TIRs were associated with deep and dense soil frost, which formed in spruce woodland and grassland communities where snow depth was shallow. Results suggest conditions conducive to erosion by water are most likely to occur during winter warm spells and in spring in vegetation types where snow cover is low or ephemeral. Threefold increases in TIRs occurred one year after livestock grazing was discontinued, suggesting Andisols are hydrologically resilient where vegetation cover is relatively continuous and soil organic carbon content is high.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.