Abstract

ABSTRACT: Little quantitative site‐specific infiltration, runoff and sediment transport data for Tahoe Basin soils under varying storm events or stage of development are available. Modular (Ml), F‐type (M2), Impact nozzle (M3), and Impact‐Fan nozzle (M4) rainfall simulators were evaluated as to their practicality and ability to characterize infiltration for the Cagwin Soil Series within the Tahoe Basin. Three slope (0–15,15–30, >30%) and four plot conditions (natural with duff [P1], natural without duff [P2], disturbed without duff [P3], and disturbed with duff [P4]) were studied. The measured data were incorporated into a modified Philip's infiltration model and multiple non‐linear regression analyses were used to examine relationships between method, slope, plot condition, and infiltration characteristics.t Simulation methods Ml and M4 produced statistically similar (P=0.01) infiltration data, as did M2 and M3 which produced lower infiltration rates. All were found suitable for use in Sierra Nevada watersheds. Ml was considered most practical. Slope had negligible effect on infiltration. The plot condition was found to significantly influence infiltration, and the effect of each plot condition was significantly different. Final infiltration rates ranged from 4.7 to 6.2 cm/hr. Thus, the Cagwin soil demonstrated moderate to high infiltration rates even when exposed to extreme storm conditions (8–10 cm/hr).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.