Abstract
Enhanced understanding of light non-aqueous phase liquid (LNAPL) infiltration into heterogeneous porous media is important for the effective design of remediation strategies. We used a 2-D experimental facility that allows for visual observation of LNAPL contours in order to study LNAPL redistribution in a layered porous medium. The layers are situated in the unsaturated zone near the watertable and they are inclined to be able to observe the effect of discontinuities in capillary forces and relative permeabilities. Two experiments were performed. The first experiment consisted of LNAPL infiltration into a fine sand matrix with a coarse sand layer, and the second experiment consisted of a coarse sand matrix and a fine sand layer. The numerical multi-phase flow model STOMP was validated with regard to the experimental results. This model is able to adequately reproduce the experimental LNAPL contours. Numerical sensitivity analysis was also performed. The capillarity contrast between sands was found to be the main controlling factor determining the final LNAPL distribution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.