Abstract
Predicting and modeling the behavior of experiments with radiation waves propagating through low-density foams require a detailed quantification of the numerous uncertainties present. In regimes where a prominent radiative shock is produced, key dynamical features include the shock position, temperature, and curvature and the spatial distribution and temperature of the corresponding supersonic radiation wave. The COAX experimental platform is designed to constrain numerical models of such a radiative shock propagating through a low-density foam by employing radiography for spatial and shock information, Dante for characterizing the x-ray flux from the indirectly driven target, and a novel spectral diagnostic designed to probe the temperature profile of the wave. In this work, we model COAX with parameterized 2D simulations and a Hohlraum-laser modeling package to study uncertainties in diagnosing the experiment. The inferred temperature profile of the COAX radiation transport experiments has been shown to differ from simulations more than expected from drive uncertainties that have been constrained by simultaneous soft x-ray flux and radiography measurements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.