Abstract

Simultaneous analysis of differential thermogravimetry (DTG) and differential scanning calorimetry (DCS) data is the key for identifying probable reactions and extracting their kinetic parameters under isothermal and non-isothermal conditions. However, an assumption of kinetically controlled thermal behavior needs to be adequately examined. Mass transfer limitations as well as multiple reactions of multiple species may be encountered while studying the thermal behavior of virgin and adsorbed crude oils. This, in turn, leads to uncertainties on the actual role of the adsorbent. In this paper we address these challenges and reflect on recent publication by Nassar et al. (2013) pertaining to catalyzed oxidation of adsorbed asphaltenes onto NiO nanoparticles. More specifically, we show that accounting for mass loss due to the adsorbent nanoparticles increases the value of the activation energy and, subsequently, influences conclusions on the role of the nanoparticle. In addition, we show that, for a given temperature zone, presenting heat flow profiles per gram of mass lost within that zone provides more reliable comparison between the size of reaction peaks. Finally, we address the heat treatment of oil and its effect on the adsorbed species, and explore the role of surface exposure and the interaction between the nanoparticles and the heavy oil fractions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.