Abstract

Constructing a quantum description of crystals from scattering experiments is of great significance to explain their macroscopic properties and to evaluate the pertinence of theoretical ab initio models. While reconstruction methods of the one-electron reduced density matrix have already been proposed, they are usually tied to strong assumptions that limit and may introduce bias in the model. The goal of this paper is to infer a one-electron reduced density matrix (1-RDM) with minimal assumptions. It has been found that the mathematical framework of semidefinite programming can achieve this goal. Additionally, it conveniently addresses the nontrivial constraints on the 1-RDM which were major hindrances for the existing models. The framework established in this work can be used as a reference to interpret experimental results. This method has been applied to the crystal of dry ice and provides very satisfactory results when compared with periodic ab initio calculations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.