Abstract

Phylogenetic techniques are increasingly applied toinfer the somatic mutational history of a tumor from DNA sequencing data. However, standard phylogenetic tree reconstruction techniques do not account for the fact that bulk sequencing data measures mutations in a population of cells. We formulate and solve the multi-state perfect phylogeny mixture deconvolution problem of reconstructing a phylogenetic tree given mixtures of its leaves, under themulti-state perfect phylogeny, or infinite alleles model. Our somatic phylogeny reconstruction usingcombinatorial enumeration (SPRUCE) algorithm uses this model to construct phylogenetic trees jointly from single-nucleotide variants (SNVs) and copy-number aberrations (CNAs). We show that SPRUCE addresses complexities in simultaneous analysis of SNVs and CNAs. In particular, there are often many possible phylogenetic trees consistent with the data, but the ambiguity decreases considerably with an increasing number of samples. These findings have implications for tumor sequencing strategies, suggest caution in drawing strong conclusions based on a single tree reconstruction, and explain difficulties faced by applying existing phylogenetic techniques to tumor sequencing data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.