Abstract

AbstractEstimates of the global influx of cosmic dust are highly uncertain, ranging from 0.4–110 t/d. All meteoric debris that enters the Earth's atmosphere is eventually transported to the surface. The downward fluxes of meteoric metals like mesospheric Na and Fe, in the region below where they are vaporized and where the majority of these species are still in atomic form, are equal to their meteoric ablation influxes, which in turn, are proportional to the total cosmic dust influx. Doppler lidar measurements of mesospheric Na fluxes made throughout the year at the Starfire Optical Range, New Mexico, (35°N) are combined with the Whole Atmosphere Community Climate Model predictions of the relative geographic variations of the key wave‐induced vertical transport processes to infer the global influxes of Na vapor and cosmic dust. The global mean Na influx is estimated to be 16,100 ± 3200 atoms/cm2/s, which corresponds to 278 ± 54 kg/d for the global input of Na vapor and 60 ± 16 t/d for the global influx of cosmic dust.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.