Abstract

The eigenvalue spectrum of covariance matrices is of central importance to a number of data analysis techniques. Usually, the sample covariance matrix is constructed from a limited number of noisy samples. We describe a method of inferring the true eigenvalue spectrum from the sample spectrum. Results of Silverstein (1986), which characterize the eigenvalue spectrum of the noise covariance matrix, and inequalities between the eigenvalues of Hermitian matrices are used to infer probability densities for the eigenvalues of the noise-free covariance matrix, using Bayesian inference. Posterior densities for each eigenvalue are obtained, which yield error estimates. The evidence framework gives estimates of the noise variance and permits model order selection by estimating the rank of the covariance matrix. The method is illustrated with numerical examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.