Abstract

AbstractBasal sliding of glaciers and ice sheets remains a source of uncertainty in simulating the long‐term evolution of ice masses. In particular, the response of ice flow to changes in driving stress depends strongly on the value of the exponent m in nonlinear friction laws (e.g., Weertman's law), which is poorly constrained by observations. Here we constrain the friction law at a natural scale on Argentière Glacier (French Alps, hard‐bed), taking advantage of well‐resolved observations of glacier mass balance, geometry and basal sliding over time spans that include large changes in driving stress. By combining three different independent methods based on (a) surface velocity inversion, (b) transient length change modeling, and (c) direct local sliding measurements, we consistently find a value of m = 3.1 ± 0.3. We suggest that Weertman's law is suitable for modeling the long‐term evolution of hard‐bedded glaciers and ice sheets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.