Abstract

An accurate estimation of three-dimensional (3D) temperature fields in channel flows is challenging but critical for many important applications such as heat exchangers, radiation energy collectors, and enhanced geothermal systems. In this paper, we demonstrate the possibility of inferring temperature fields from concentration fields for laminar convection flows in a 3D channel using a machine learning (ML) approach. The study involves generation of data using 3D numerical simulations, application of deep learning methodology using conditional generative adversarial networks (cGANs), and analysis of how dataset selection affects model performance. The model is also tested for applicability in different convection scenarios. Results show that cGANs can successfully infer temperature fields from concentration fields, and the reconstruction accuracy is sensitive to the training dataset selected. In this study, we demonstrate how ML can be used to overcome the limitations of traditional heat and mass analogy functions widely used in heat transfer research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.