Abstract
Inferring the substitutable and complementary products for a given product is an essential and fundamental concern for the recommender system. To achieve this, existing approaches take advantage of the knowledge graphs to learn more evidences for inference, whereas they often suffer from invalid reasoning for lack of elegant decision making strategies. Therefore, we propose a novel Knowledge-Aware Path Reasoning (KAPR) model which leverages the dynamic policy network to make explicit reasoning over knowledge graphs, for inferring the substitutable and complementary relationships. Our contributions can be highlighted as three aspects. Firstly, we model this inference scenario as a Markov Decision Process in order to accomplish a knowledge-aware path reasoning over knowledge graphs. Secondly, we integrate both structured and unstructured knowledge to provide adequate evidences for making accurate decision-making. Thirdly, we evaluate our model on a series of real-world datasets, achieving competitive performance compared with state-of-the-art approaches. Our code is released on https://gitee.com/yangzijing_flower/kapr/tree/master.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.