Abstract

AbstractMaximum-entropy genetic regulatory networks (GRNs) have been increasingly applied to infer pairwise gene interactions from biological data. Most maximum-entropy GRNs inferring methods estimate the inverse covariance matrix based on the assumption that the network is sparse and the problem can be approximated via convex optimization. However, the assumption might not be true in reality. To address this issue, in this paper, we propose an adaptive differential evolution (DE) algorithm to directly infer the maximum-entropy GRNs, which is formulated as a constrained optimization problem with the maximum entropy being the objective function and the first and second moments being two penalty terms. A GRN inferred by DE is a fully connected network that can reflect the gene regulatory relations. The experimental results on both simulated and real data suggest that the proposed method is robust in inferring the small-scale maximum-entropy GRNs.KeywordsMaximum-entropyGenetic regulatory networksConstrained optimizationDE algorithm

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.