Abstract
We propose a method for inferring semantic information from textual data in content-based multimedia retrieval. Training examples of images and videos belonging to a specific semantic class are associated with their low-level visual and aural descriptors augmented with textual features such as frequencies of significant words. A fuzzy mapping of a semantic class in the training set to a class of similar objects in the test set is created by using Self-Organizing Maps (SOMs) trained from the low-level descriptors. Experiments with two databases and different textual features show promising results, indicating the usefulness of the approach in bridging the gap from low-level visual features to semantic concepts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.