Abstract
We introduce a new inference method to estimate evolutionary distances for any two populations to their most recent common ancestral population using single-nucleotide polymorphism allele frequencies. Our model takes fixation into consideration, making it nonreversible, and guarantees that the distribution of reconstructed ancestral frequencies is contained on the interval $[0,1]$. To scale this method to large numbers of populations, we introduce the asymmetric neighbor joining algorithm, an efficient method for reconstructing rooted bifurcating nonclock trees. Asymmetric neighbor joining provides a scalable rooting method applicable to any nonreversible evolutionary modeling setups. We explore the statistical properties of asymmetric neighbor joining, and demonstrate its accuracy on synthetic data. We validate our method by reconstructing rooted phylogenetic trees from the Human Genome Diversity Panel data. Our results are obtained without using an outgroup, and are consistent with the prevalent recent single-origin model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.