Abstract

Population viral load (VL), the most comprehensive measure of the HIV transmission potential, cannot be directly measured due to lack of complete sampling of all people with HIV. A given HIV clinic's electronic health record (EHR), a biased sample of this population, may be used to attempt to impute this measure. We simulated a population of 10,000 individuals with VL calibrated to surveillance data with a geometric mean of 4449 copies/mL. We sampled 3 hypothetical EHRs from (A) the source population, (B) those diagnosed, and (C) those retained in care. Our analysis imputed population VL from each EHR using sampling weights followed by Bayesian adjustment. These methods were then tested using EHR data from an HIV clinic in Delaware. Following weighting, the estimates moved in the direction of the population value with correspondingly wider 95% intervals as follows: clinic A: 4364 (95% interval 1963-11,132) copies/mL; clinic B: 4420 (95% interval 1913-10,199) copies/mL; and clinic C: 242 (95% interval 113-563) copies/mL. Bayesian-adjusted weighting further improved the estimate. These findings suggest that methodological adjustments are ineffective for estimating population VL from a single clinic's EHR without the resource-intensive elucidation of an informative prior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.