Abstract

Abstract The seasonal cycle in temperature is a large and well-observed response to radiative forcing, suggesting its potential as a natural analog to human-caused climate change. Although there have been advances constraining some climate feedback parameters using seasonal observations, the seasonal cycle has not been used to inform about the local temperature sensitivity to greenhouse gas forcing. In this study, we uncover a nonlinear relationship between the amplitude and phase of the seasonal cycle and forced temperature trends in seven CMIP5-era large ensembles across the Northern Hemisphere extratropical continents. We develop a mixture energy balance model that reproduces this relationship and reveals the unexpected finding that the phasing of the seasonal cycle—in addition to the amplitude—contains information about local temperature sensitivity to seasonal forcing over land. Using this energy balance model framework, we compare the pattern and magnitude of the seasonally inferred sensitivity of the surface temperature response to anthropogenic radiative forcing. The seasonally constrained model largely reproduces the pattern of human-caused temperature trends seen in climate models (r = 0.81, p value < 0.01), including polar amplification, but the magnitude of the response is smaller by about a factor of 3. Our results show the relevance of both phasing and amplitude for constraining patterns of local feedbacks and suggest the utility of additional research to better understand the differences in sensitivity between seasonal and greenhouse gas forcing. Significance Statement Warming in response to increased greenhouse gases is not spatially uniform across land. We wanted to understand whether the familiar seasonal cycle in temperature could provide information about climate change. We found that climate models show a strong link between the seasonal cycle and future warming: places with a larger and more delayed temperature response to the seasonal cycle in solar forcing tend to warm more across the Northern Hemisphere midlatitudes. A very simple model for the climate system, whose parameters are based on the seasonal cycle, captures the pattern but not the magnitude of warming. Our findings suggest that there are some similarities between the processes that control temperature change on seasonal and climate change time scales, but that we must understand the difference between seasonal and longer-term sensitivity to warming before the seasonal cycle can be used to reduce uncertainty about climate change.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call