Abstract

Claws are involved in a number of behaviours including locomotion and prey capture, and as a result animals evolve claw morphologies that enable these functions. Past authors have found geometry of the keratinous sheath of the claw to correlate with mode of life for extant birds and squamates; this relationship has frequently been cited to infer lifestyles for Mesozoic theropods including Archaeopteryx. However, many fossil claws lack keratinous sheaths and thus cannot be analysed using current methods. As the ungual phalanx within the claw is more commonly preserved in the fossil record, geometry of this bone may provide a more useful metric for paleontological analysis. In this study, ungual bones of 108 birds and 5 squamates were imaged using X-ray techniques and a relationship was found between curvatures of the ungual bone within the claw of pedal digit III and four modes of life; ground-dwelling, perching, predatory, and scansorial; using linear discriminant analysis with weighted accuracy equal to 0.79. Our model predicts arboreal lifestyles for Archaeopteryx and Microraptor and a predatory ecology for Confuciusornis. These findings demonstrate the utility of our model in answering questions of palaeoecology, the theropod-bird transition, and the evolution of avian flight. Though the metric exhibits a strong correlation with lifestyle, morphospaces for PD-III curvatures overlap and so this metric should be considered alongside additional evidence.

Highlights

  • The amniote claw is utilised in multiple functions related to ecology and lifestyle

  • The relationship found for ungual bones is similar to that found for claw sheaths: lower angles of curvature correlate with terrestrial lifestyles, intermediate claw angles correlate with perching and predatory lifestyles, and higher claw angles correlate with scansorial lifestyles (Fig 4)

  • The study found that curvatures of the pedal digit III (PD-III) ungual bone provide a useful proxy for certain modes of life but exhibit a stronger correlation with lifestyle than

Read more

Summary

Introduction

Claws bear an animal’s weight during locomotion, are utilised in prey capture, and more. These tasks exert selective pressure on the claw and so claws are expected to evolve morphologies that enable performance of essential functions whilst minimising stress/strain during locomotion [1,2]. The evolutionary reduction of bending stresses during terrestrial locomotion is the proposed cause of the relatively flat claws observed for ground-dwelling taxa compared to pedal claws belonging to arboreal and/or predatory taxa, which tend to possess more curved claws for enabling grip [3,4,5,6,7,8,9,10,11,12].The relationship between claw morphology and lifestyle has frequently been utilised to infer lifestyle for fossil taxa.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.