Abstract

Using our dynamic Bayesian network with structural Expectation Maximization (SEM-DBN), we develop a new framework to model gene regulatory network from both gene expression data and transcriptional factor binding site data. Only based on mRNA expression data, it is not enough to accurately estimate a gene network. It is difficult for us to estimate a gene network accurately only with the mRNA expression data. In this paper, we use the transcription factor binding location data in order to introduce the prior knowledge to SEM-DBN model. Gene expression data are also exploited specifically for likelihood. Meanwhile, we incorporate the prior knowledge into every learning step by SEM rather than only learning from the very beginning, which can compensate the attenuation of the effect with location data. The effectiveness of our proposed method is demonstrated through the analysis of Saccharomyces cerevisiae cell cycle data. The combination of heterogeneous data from multiple sources ensures that our results are more accurate than those recovered from only gene expression data alone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.