Abstract

Reverse engineering of gene regulatory networks from microarray time series data has been a challenging problem due to the limit of available data. In this paper, a new approach is proposed based on the concept of transfer entropy. Using this information theoretic measure, causal relations between pairs of genes are assessed to draw a causal network. A heuristic rule is then applied to differentiate direct and indirect causality. Simulation on a synthetic network showed that the transfer entropy can identify both linear and nonlinear causality. Application of the method in a biological data identified many causal interactions with biological information supports.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.