Abstract

Estimating feature importance, which is the contribution of a prediction or several predictions due to a feature, is an essential aspect of explaining data-based models. Besides explaining the model itself, an equally relevant question is which features are important in the underlying data generating process. We present a Shapley-value-based framework for inferring the importance of individual features, including uncertainty in the estimator. We build upon the recently published model-agnostic feature importance score of SAGE (Shapley additive global importance) and introduce Sub-SAGE. For tree-based models, it has the advantage that it can be estimated without computationally expensive resampling. We argue that for all model types the uncertainties in our Sub-SAGE estimator can be estimated using bootstrapping and demonstrate the approach for tree ensemble methods. The framework is exemplified on synthetic data as well as large genotype data for predicting feature importance with respect to obesity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.