Abstract
We consider a population evolving due to mutation, selection and recombination, where selection includes single-locus terms (additive fitness) and two-loci terms (pairwise epistatic fitness). We further consider the problem of inferring fitness in the evolutionary dynamics from one or several snapshots of the distribution of genotypes in the population. In recent literature, this has been done by applying the quasi-linkage equilibrium regime, first obtained by Kimura in the limit of high recombination. Here, we show that the approach also works in the interesting regime where the effects of mutations are comparable to or larger than recombination. This leads to a modified main epistatic fitness inference formula where the rates of mutation and recombination occur together. We also derive this formula using by a previously developed Gaussian closure that formally remains valid when recombination is absent. The findings are validated through numerical simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Statistical Mechanics: Theory and Experiment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.