Abstract

A parametrised spectral line profile model is formulated to investigate the diagnostic scope for recovering plasma parameters from hydrogenic Balmer and Paschen series spectroscopy in the context of JET-ILW divertor plasmas. The separate treatment of Zeeman and Stark contributions in the line model is tested against the PPP-B code which accounts for their combined influence on the spectral line shape. The proposed simplified model does not fully reproduce the Stark–Zeeman features for the α and β transitions, but good agreement is observed in the line width and wing profiles, especially for n > 5. The line model has been applied to infer radial density profiles in the JET-ILW divertor with generally good agreement between the D , , , and lines for high recycling and detached conditions. In an L-mode detached plasma pulse the Langmuir probe measurements typically underestimated the density by a factor 2–3 and overestimated the electron temperature by a factor of 5–10 compared to spectroscopically derived values. The line model is further used to generate synthetic high-resolution spectra for low-n transitions to assess the potential for parameter recovery using a multi-parametric fitting technique. In cases with 4 parameter fits with a single Maxwellian neutral temperature component the D line yields the best results with parameter estimates within 10% of the input values. For cases with 9 parameter fits inclusive of a multi-component neutral velocity distribution function the quality of the fits is degraded. Simultaneous fitting of the D and profiles improves the fit quality significantly, highlighting the importance of complementary spectroscopic measurements for divertor plasma emission studies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.