Abstract

Organisms thriving at extreme cold surroundings are called as psychrophiles and they present a wealth of knowledge about sequence adjustments in proteins that had occurred during the adaptation to low temperatures. In this paper, we propose a new cascading model to investigate the basis for psychrophilicity. In this model, a superior classifier was used to discriminate psychrophilic from mesophilic protein sequences, and then the PART rule generating algorithm was applied on the input instances that are correctly classified by the classifier, to generate human interpretable rules. These derived rules were further validated on a structural dataset and finally analyzed to discover the underlying biological basis about the psychrophilicity. In this study, we have used one of the key features of psychrophilic proteins accountable for remaining functional in extreme cold temperature surroundings i.e., global patterns of amino acid composition as the input features. The rotation forest classifier outperformed all the other classifiers with maximum accuracy of 70.5% and maximum AUC of 0.78. The effect of sequence length on the classification accuracy was also investigated. The analysis of the derived rules and interpretation of the analyzed results had revealed some interesting phenomena such as the amino acids A, D, G, F, and S are over-represented, and T is under-represented in psychrophilic proteins. These findings augment the existing domain knowledge for psychrophilic sequence features.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.