Abstract

AbstractGeologists and geomorphologists have long been concerned with rates of sediment transfer as bedload in gravel-bed rivers, especially as rates of sediment transfer are important factors controlling river aggradation and incision. Bedload transport equations, originally derived for Holocene streams, have been used widely in modern gravel-bed river systems. However, palaeohydraulic reconstructions have received less attention and are generally dismissed as inaccurate since most are estimated to be at least an order of magnitude out. This study focuses on deriving stream power, bedload transport rates and efficiency estimates for Oligo–Miocene and Plio–Pleistocene gravel-bed river deposits from the south central Pyrenees, Spain. The basic data used in the palaeohydraulic calculations are estimates of palaeoslope, palaeovelocity, palaeodepth and the volume of sediment accreted in yearly flood events on gravel bars. Analyses of data from these ancient river systems yield more accurate estimates of relative stream power, bedload transport rates and efficiency parameters. This study illustrates the need for understanding the palaeohydraulics of river systems in order to characterize ancient rivers. Gravel-bed rivers with low sediment supply and high bedload transport rates incise. Conversely, when sediment supply is abundant, bedload transport rates and efficiency are low and the river system aggrades.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call