Abstract
BackgroundNetwork Component Analysis (NCA) is a network structure-driven framework for deducing regulatory signal dynamics. In contrast to principal component analysis, which can be employed to select the high-variance genes, NCA makes use of the connectivity structure from transcriptional regulatory networks to infer dynamics of transcription factor activities. Using the budding yeast Saccharomyces cerevisiae as a model system, we aim to deduce regulatory actions of cytokinesis-related genes, using precise spatial proximity (midbody) and/or temporal synchronicity (cytokinesis) to avoid full-scale computation from genome-wide databases.ResultsNCA was applied to infer regulatory actions of transcription factor activity from microarray data and partial transcription factor-gene connectivity information for cytokinesis-related genes, which were a subset of genome-wide datasets. No literature has so far discussed the inferred results through NCA are independent of the scale of the gene expression dataset. To avoid full-scale computation from genome-wide databases, four cytokinesis-related gene cases were selected for NCA by running computational analysis over the transcription factor database to confirm the approach being scale-free. The inferred dynamics of transcription factor activity through NCA were independent of the scale of the data matrix selected from the four cytokinesis-related gene sets. Moreover, the inferred regulatory actions were nearly identical to published observations for the selected cytokinesis-related genes in the budding yeast; namely, Mcm1, Ndd1, and Fkh2, which form a transcription factor complex to control expression of the CLB2 cluster (i.e. BUD4, CHS2, IQG1, and CDC5).ConclusionIn this study, using S. cerevisiae as a model system, NCA was successfully applied to infer similar regulatory actions of transcription factor activities from two various microarray databases and several partial transcription factor-gene connectivity datasets for selected cytokinesis-related genes independent of data sizes. The regulated action for four selected cytokinesis-related genes (BUD4, CHS2, IQG1, and CDC5) belongs to the M-phase or M/G1 phase, consistent with the empirical observations that in S. cerevisiae, the Mcm1-Ndd1-Fkh2 transcription factor complex can regulate expression of the cytokinesis-related genes BUD4, CHS2, IQG1, and CDC5. Since Bud4, Iqg1, and Cdc5 are highly conserved between human and yeast, results obtained from NCA for cytokinesis in the budding yeast can lead to a suggestion that human cells should have the transcription regulator(s) as the budding yeast Mcm1-Ndd1-Fkh2 transcription factor complex in controlling occurrence of cytokinesis.
Highlights
Network Component Analysis (NCA) is a network structure-driven framework for deducing regulatory signal dynamics
BMC Systems Biology 2009, 3:110 http://www.biomedcentral.com/1752-0509/3/110 from NCA for cytokinesis in the budding yeast can lead to a suggestion that human cells should have the transcription regulator(s) as the budding yeast Mcm1-Ndd1-Fkh2 transcription factor complex in controlling occurrence of cytokinesis
We will use S. cerevisiae as a model system to simplify our approach to building up an inference system for identifying the relationship between transcription regulation of novel genes and the occurrence of cytokinesis
Summary
Network Component Analysis (NCA) is a network structure-driven framework for deducing regulatory signal dynamics. In contrast to principal component analysis, which can be employed to select the high-variance genes, NCA makes use of the connectivity structure from transcriptional regulatory networks to infer dynamics of transcription factor activities. The midbody is a transient "organelle-like" structure whose components are indispensable for cytokinesis [1]. Inappropriate regulation of midbody formation may significantly affect terminal cytokinesis events and result in a multi-nucleate phenotype, which may contribute to the development of cancer [1,2,3,4]. Understanding the mechanism that regulates formation of the midbody complex, and its role in cytokinesis, may allow us to gain more insight into cancer development
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.