Abstract

Cognitive architectures (i.e., theorized blueprints on the structure of the mind) can be used to make predictions about the effect of multiregion brain activity on the systems level. Recent work has connected one high-level cognitive architecture, known as the "Common Model of Cognition," to task-based functional MRI data with great success. That approach, however, was limited in that it was intrinsically top-down, and could thus only be compared with alternate architectures that the experimenter could contrive. In this paper, we propose a bottom-up method to infer a cognitive architecture directly from brain imaging data itself, overcoming this limitation. Specifically, Granger causality modeling was applied to the same task-based fMRI data to infer a network of causal connections between brain regions based on their functional connectivity. The resulting network shares many connections with those proposed by the Common Model of Cognition but also suggests important additions likely related to the role of episodic memory. This combined top-down and bottom-up modeling approach can be used to help formalize the computational instantiation of cognitive architectures and further refine a comprehensive theory of cognition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.