Abstract

Little is known about the cellular mechanisms that control postnatal chondrocyte differentiation. As a first step towards identifying those mechanisms, gene expression shifts were characterized in an in vitro model of chondroinduction. In previous studies, several functional classes of genes (cytoskeletal and matrix elements, cell adhesion proteins, peptide growth factors, and signal transduction proteins) were found to be altered in human dermal fibroblasts (hDFs) cultured in porous collagen sponges with chondroinductive demineralized bone powder (DBP) for 3 days. In addition, a number of "novel" sequences were identified. In this study, molecular techniques were combined with computational methods to characterize those sequences. Gene expression of all 10 novel sequences tested was found in hDFs by RT-PCR. The sequences were compared to the human genome, and their cellular functions were inferred from genes that mapped to the same chromosomal coordinates. Only one of the novel sequences contained a protein-coding region (kinesin superfamily protein 26B). The others contained 3' untranslated (osteonectin, alpha-V integrin, RAP2B) or other untranslated regions (PTPN21, GAS6) of mRNAs. The cellular functions of the DBP-regulated genes described in this study fall into similar categories as those previously identified. These results provide new details on the cellular response of hDFs exposed to DBP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.