Abstract

IntroductionCorrelations between sea surface temperature (SST) and growth parameters of the solitary azooxanthellate Dendrophylliid Leptopsammia pruvoti were assessed along an 8° latitudinal gradient on western Italian coasts (Mediterranean Sea), to check for possible negative effects of increasing temperature as the ones reported for a closely related, sympatric but zooxanthellate species.ResultsCalcification rate was correlated with skeletal density but not with linear extension rate, indicating that calcium carbonate deposition was preferentially allocated to keep a constant skeletal density. Unlike most studies on both temperate and tropical zooxanthellate corals, where calcification rate is strongly related to environmental parameters such as SST, in the present study calcification rate was not correlated with SST.ConclusionsThe lower sensitivity of L. pruvoti to SST with respect to other sympatric zooxanthellate corals, such as Balanophyllia europaea, may rely on the absence of a temperature induced inhibition of photosynthesis, and thus the absence of an inhibition of the calcification process. This study is the first field investigation of the relationship between SST and the three growth parameters of an azooxanthellate coral. Increasing research effort on determining the effects of temperature on biological traits of the poorly studied azooxanthellate scleractinians may help to predict the possible species assemblage shifts that are likely to occur in the immediate future as a consequence of global climatic change.

Highlights

  • Correlations between sea surface temperature (SST) and growth parameters of the solitary azooxanthellate Dendrophylliid Leptopsammia pruvoti were assessed along an 8° latitudinal gradient on western Italian coasts (Mediterranean Sea), to check for possible negative effects of increasing temperature as the ones reported for a closely related, sympatric but zooxanthellate species

  • This study investigated the relationships between SST and the three growth components in the temperate/ subtropical coral Leptopsammia pruvoti Lacaze-Duthiers, 1897

  • Linear extension and calcification rates were significantly different among the populations of Leptopsammia pruvoti (Kruskal-Wallis test, p < 0.001; Table 2)

Read more

Summary

Introduction

Correlations between sea surface temperature (SST) and growth parameters of the solitary azooxanthellate Dendrophylliid Leptopsammia pruvoti were assessed along an 8° latitudinal gradient on western Italian coasts (Mediterranean Sea), to check for possible negative effects of increasing temperature as the ones reported for a closely related, sympatric but zooxanthellate species. Coral growth can be defined by three related parameters (calcification = linear extension x skeletal density; [3,5]) whose measurement is essential when assessing the environmental effects on coral growth, contrast, monitoring efforts of 16 years of calcification in Porites colonies from the Great Barrier Reef [7] and 21 years of calcification in Porites colonies from Thailand [8] show that calcification declined over time, and suggests that the response may be due to the interactive effects of elevated seawater temperatures and pCO2 increase, as previously reported for colonies of Stylophora pistillata grown in aquaria [11]. A recent analysis of calcification of Porites colonies along an 11° latitudinal gradient along Western Australia coasts has found no widespread patterns of decreasing calcification since 1900, and concludes that the main driver of change in coral calcification is the rate of change in the thermal environment of coral reefs [10]. Laboratory observations on calcification rates in Cladocora caespitosa and Oculina patagonica show that long periods of elevated temperatures, corresponding to or higher than the maximum summer temperature in the field, lead to a decrease of calcification [13]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.