Abstract

BackgroundUltrasound measurement of dynamic changes in inferior vena cava (IVC) diameter can be used to assess intravascular volume status in critically ill patients, but published studies vary in accuracy as well as recommended diagnostic cutoffs. Part of this variability may be related to movements of the vessel relative to the transducer during the respiratory cycle which results in unintended comparison of different points of the IVC at end expiration and inspiration, possibly introducing error related to variations in normal anatomy. The objective of this study was to quantify both craniocaudal and mediolateral movements of the IVC as well as the vessel's axis of collapse during respirophasic ultrasound imaging.MethodsPatients were enrolled from a single urban academic emergency department with ultrasound examinations performed by sonographers experienced in IVC ultrasound. The IVC was imaged from the level of the diaphragm along its entire course to its bifurcation with diameter measurements and respiratory collapse measured at a single point inferior to the confluence of the hepatic veins. While imaging the vessel in its long axis, movement in a craniocaudal direction during respiration was measured by tracking the movement of a fixed point across the field of view. Likewise, imaging the short axis of the IVC allowed for measurement of mediolateral displacement as well as the vessel's angle of collapse relative to vertical.ResultsSeventy patients were enrolled over a 6-month period. The average diameter of the IVC was 13.8 mm (95% CI 8.41 to 19.2 mm), with a mean respiratory collapse of 34.8% (95% CI 19.5% to 50.2%). Movement of the vessel relative to the transducer occurred in both mediolateral and craniocaudal directions. Movement was greater in the craniocaudal direction at 21.7 mm compared to the mediolateral movement at 3.9 mm (p < 0.001). Angle of collapse assessed in the transverse plane averaged 115° (95% CI 112° to 118°).ConclusionsMovement of the IVC occurs in both mediolateral and craniocaudal directions during respirophasic ultrasound imaging. Further, collapse of the vessel occurs not at true vertical (90°) but 25° off this axis. Technical approach to IVC assessment needs to be tailored to account for these factors.

Highlights

  • Ultrasound measurement of dynamic changes in inferior vena cava (IVC) diameter can be used to assess intravascular volume status in critically ill patients, but published studies vary in accuracy as well as recommended diagnostic cutoffs

  • Studies focusing on the sonographic measurement of the inferior vena cava (IVC) and its respirophasic change in diameter have demonstrated mixed results, but findings suggest that increase in respiratory variation of IVC correlates with low central

  • Despite a number of research studies focusing on sonographic evaluation of the IVC, there remains no standardization of the measurement technique [9] with researchers using both long-axis [5,6,10,11,12,13,14,15] and shortaxis [7,15,16] imaging approaches

Read more

Summary

Introduction

Ultrasound measurement of dynamic changes in inferior vena cava (IVC) diameter can be used to assess intravascular volume status in critically ill patients, but published studies vary in accuracy as well as recommended diagnostic cutoffs. Part of this variability may be related to movements of the vessel relative to the transducer during the respiratory cycle which results in unintended comparison of different points of the IVC at end expiration and inspiration, possibly introducing error related to variations in normal anatomy. Other aspects of IVC anatomy such as the axis of collapse [17] may impact efforts to correlate respiratory variation and specific sonographic measurement techniques

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call