Abstract

We investigate the structure of the Sun by helioseismic inversion of a set of p-mode frequencies which includes new precise observations of modes with high degree ( l< 1000) obtained from the MDI instrument on the SOHO satellite (Rhodes et al. 1998). Such data have the potential to improve the resolution of the solar structure in the near-surface region, to provide detailed tests of the equation of state and constrain the envelope helium abundance. In order to suppress the uncertainties in the treatment of the surface layers in helioseismic inversion procedures, we introduce here the use of a new surface term, developed on the basis of higher-order asymptotic theory of acoustic modes and suitable for the handling of high-degree mode frequencies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.