Abstract

This study aims to investigate the estimation problems when the parent distribution of the population under consideration is the Nadarajah–Haghighi distribution in the presence of an adaptive progressive Type-II hybrid censoring scheme. Two approaches are considered in this regard, namely, the maximum likelihood and Bayesian estimation methods. From the classical point of view, the maximum likelihood estimates of the unknown parameters, reliability, and hazard rate functions are obtained as well as the associated approximate confidence intervals. On the other hand, the Bayes estimates are obtained based on symmetric and asymmetric loss functions. The Bayes point estimates and the highest posterior density Bayes credible intervals are computed using the Monte Carlo Markov Chain technique. A comprehensive simulation study is implemented by proposing different scenarios for sample sizes and progressive censoring schemes. Moreover, two applications are considered by analyzing two real data sets. The outcomes of the numerical investigations show that the Bayes estimates using the general entropy loss function are preferred over the other methods.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call