Abstract
To draw inference on serial extremal dependence within heavy-tailed Markov chains, Drees et al., (2015) proposed nonparametric estimators of the spectral tail process. The methodology can be extended to the more general setting of a stationary, regularly varying time series. The large-sample distribution of the estimators is derived via empirical process theory for cluster functionals. The finite-sample performance of these estimators is evaluated via Monte Carlo simulations. Moreover, two different bootstrap schemes are employed which yield confidence intervals for the pre-asymptotic spectral tail process: the stationary bootstrap and the multiplier block bootstrap. The estimators are applied to stock price data to study the persistence of positive and negative shocks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.