Abstract
Summary As high dimensional data become routinely available in applied sciences, sufficient dimension reduction has been widely employed and its research has received considerable attention. However, with the majority of sufficient dimension reduction methodology focusing on the dimension reduction step, complete analysis and inference after dimension reduction have yet to receive much attention. We couple the strategy of sufficient dimension reduction with a flexible semiparametric model. We concentrate on inference with respect to the primary variables of interest, and we employ sufficient dimension reduction to bring down the dimension of the regression effectively. Extensive simulations demonstrate the efficacy of the method proposed, and a real data analysis is presented for illustration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series B: Statistical Methodology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.