Abstract
We study the rank of the instantaneous or spot covariance matrix ΣX(t) of a multidimensional process X(t). Given high-frequency observations X(i/n), i=0,…,n, we test the null hypothesis rank(ΣX(t))≤r for all t against local alternatives where the average (r+1)st eigenvalue is larger than some signal detection rate vn. A major problem is that the inherent averaging in local covariance statistics produces a bias that distorts the rank statistics. We show that the bias depends on the regularity and spectral gap of ΣX(t). We establish explicit matrix perturbation and concentration results that provide nonasymptotic uniform critical values and optimal signal detection rates vn. This leads to a rank estimation method via sequential testing. For a class of stochastic volatility models, we determine data-driven critical values via normed p-variations of estimated local covariance matrices. The methods are illustrated by simulations and an application to high-frequency data of U.S. government bonds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.