Abstract
This article considers the estimation of the stress-strength reliability parameter, θ = P(X < Y), when both the stress (X) and the strength (Y) are dependent random variables from a Bivariate Lomax distribution based on a progressive type II censored sample. The maximum likelihood, the method of moments and the Bayes estimators are all derived. Bayesian estimators are obtained for both symmetric and asymmetric loss functions, via squared error and Linex loss functions, respectively. Since there is no closed form for the Bayes estimators, Lindley’s approximation is utilized to derive the Bayes estimators under these loss functions. An extensive simulation study is conducted to gauge the performance of the proposed estimators based on three criteria, namely, relative bias, mean squared error, and Pitman nearness probability. A real data application is provided to illustrate the performance of our proposed estimators through bootstrap analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.