Abstract

We consider the problem of assessing the joint effect of a set of genetic markers on multiple, possibly correlated phenotypes of interest. We develop a kernel machine based multivariate regression framework, where the joint effect of the marker set on each of the phenotypes is modeled using prespecified kernel functions with unknown variance components. Unlike most existing methods that mainly focus on the global association between the marker set and the phenotype set, we develop estimation and testing procedures to study phenotype-specific associations. Specifically, we develop an estimation method based on the penalized likelihood approach to estimate phenotype-specific effects and their corresponding standard errors while accounting for possible correlation among the phenotypes. We develop testing procedures for the association of the marker set with any subset of phenotypes using a score-based variance components testing method. We assess the performance of our proposed methodology via a simulation study and demonstrate the utility of the proposed method using the Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.