Abstract

We propose a method for inference on moderately high-dimensional, nonlinear, non-Gaussian, partially observed Markov process models for which the transition density is not analytically tractable. Markov processes with intractable transition densities arise in models defined implicitly by simulation algorithms. Widely used particle filter methods are applicable to nonlinear, non-Gaussian models but suffer from the curse of dimensionality. Improved scalability is provided by ensemble Kalman filter methods, but these are inappropriate for highly nonlinear and non-Gaussian models. We propose a particle filter method having improved practical and theoretical scalability with respect to the model dimension. This method is applicable to implicitly defined models having analytically intractable transition densities. Our method is developed based on the assumption that the latent process is defined in continuous time and that a simulator of this latent process is available. In this method, particles are propagated at intermediate time intervals between observations and are resampled based on a forecast likelihood of future observations. We combine this particle filter with parameter estimation methodology to enable likelihood-based inference for highly nonlinear spatiotemporal systems. We demonstrate our methodology on a stochastic Lorenz 96 model and a model for the population dynamics of infectious diseases in a network of linked regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.