Abstract
The pre-scission and post-scission neutron multiplicities are measured for the 18O + 184W reaction in the excitation energy range of 67.23–76.37 MeV. Langevin dynamical calculations are performed to infer the energy dependence of fission decay time in compliance with the measured neutron multiplicities. Different models for nuclear dissipation are employed for this purpose. Fission process is usually expected to be faster at a higher beam energy. However, we found an enhancement in the average fission time as the incident beam energy increases. It happens because a higher excitation energy helps more neutrons to evaporate that eventually stabilizes the system against fission. The competition between fission and neutron evaporation delicately depends on the available excitation energy and it is explained here with the help of the partial fission yields contributed by the different isotopes of the primary compound nucleus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Physics G: Nuclear and Particle Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.