Abstract
We consider a situation where the distribution of a random variable is being estimated by the empirical distribution of noisy measurements of that variable. This is common practice in, for example, teacher value-added models and other fixed-effect models for panel data. We use an asymptotic embedding where the noise shrinks with the sample size to calculate the leading bias in the empirical distribution arising from the presence of noise. The leading bias in the empirical quantile function is equally obtained. These calculations are new in the literature, where only results on smooth functionals such as the mean and variance have been derived. Given a closed-form expression for the bias, bias-corrected estimator of the distribution function and quantile function can be constructed. We provide both analytical and jackknife corrections that recenter the limit distribution and yield confidence intervals with correct coverage in large samples. These corrections are non-parametric and easy to implement. Our approach can be connected to corrections for selection bias and shrinkage estimation and is to be contrasted with deconvolution. Simulation results confirm the much-improved sampling behavior of the corrected estimators.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.