Abstract

Computing the posterior distribution of a probabilistic program is a hard task for which no one-fit-for-all solution exists. We propose Gaussian Semantics, which approximates the exact probabilistic semantics of a bounded program by means of Gaussian mixtures. It is parametrized by a map that associates each program location with the moment order to be matched in the approximation. We provide two main contributions. The first is a universal approximation theorem stating that, under mild conditions, Gaussian Semantics can approximate the exact semantics arbitrarily closely. The second is an approximation that matches up to second-order moments analytically in face of the generally difficult problem of matching moments of Gaussian mixtures with arbitrary moment order. We test our second-order Gaussian approximation (SOGA) on a number of case studies from the literature. We show that it can provide accurate estimates in models not supported by other approximation methods or when exact symbolic techniques fail because of complex expressions or non-simplified integrals. On two notable classes of problems, namely collaborative filtering and programs involving mixtures of continuous and discrete distributions, we show that SOGA significantly outperforms alternative techniques in terms of accuracy and computational time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.