Abstract

The article presents a static analysis for computing polynomial invariants for imperative programs. The analysis is derived from an abstract interpretation of a backwards semantics, and computes preconditions for equalities of the form g=0 to hold at the end of execution. A distinguishing feature of the technique is that it computes polynomial loop invariants without resorting to Grobner base computations. The analysis uses remainder computations over parameterized polynomials in order to handle conditionals and loops efficiently. The algorithm can analyze and find a large majority of loop invariants reported previously in the literature, and executes significantly faster than implementations using Grobner bases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.