Abstract

Reconstruction of transcriptional regulatory networks (TRNs) is a powerful approach to unravel the gene expression programs involved in healthy and disease states of a cell. However, these networks are usually reconstructed independent of the phenotypic properties of the samples and therefore cannot identify regulatory mechanisms that are related to a phenotypic outcome of interest. In this study, we developed a new method called InPheRNo to identify ‘phenotype-relevant’ transcriptional regulatory networks. This method is based on a probabilistic graphical model whose conditional probability distributions model the simultaneous effects of multiple transcription factors (TFs) on their target genes as well as the statistical relationship between target gene expression and phenotype. Extensive comparison of InPheRNo with related approaches using primary tumor samples of 18 cancer types from The Cancer Genome Atlas revealed that InPheRNo can accurately reconstruct cancer type-relevant TRNs and identify cancer driver TFs. In addition, survival analysis revealed that the activity level of TFs with many target genes could distinguish patients with good prognosis from those with poor prognosis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.