Abstract

Inferring Granger-causal interactions between processes promises deeper insights into mechanisms underlying network phenomena, e.g. in the neurosciences where the level of connectivity in neural networks is of particular interest. Renormalized partial directed coherence has been introduced as a means to investigate Granger causality in such multivariate systems. A major challenge in estimating respective coherences is a reliable parameter estimation of vector autoregressive processes. We discuss two shortcomings typical in relevant applications, i.e. non-stationarity of the processes generating the time series and contamination with observational noise. To overcome both, we present a new approach by combining renormalized partial directed coherence with state space modeling. A numerical efficient way to perform both the estimation as well as the statistical inference will be presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call